We're excited to unveil our Smart Polygon system in Flux! This powerful capability builds on top of our automatic copper fills to transform how you create and manage custom copper areas in your PCB designs.
Smart Polygons in Flux behave intuitively like traces, making them straightforward to learn and use—start directly from any pad with automatic net association, simply click to place and adjust points, and watch as copper intelligently reflows in real-time. Let’s dive in!
What Are Polygons and Why Do They Matter?
In PCB design, polygons are customizable copper shapes directly tied to a specific net. They’re crucial because they significantly influence the electrical performance and reliability of your PCB. Polygons allow you to optimize your board layout for specific electrical properties, including improved grounding, controlled impedance, and efficient heat distribution.
Specifically, polygons are indispensable for:
Ground and Power Planes: Ensure stable and reliable power distribution, reducing electrical noise and voltage fluctuations.
High Current Management: Create wide copper paths to efficiently carry higher currents, reducing resistance and heat.
RF and Antenna Design:Precisely shape copper areas to meet specific RF performance criteria, critical in high-frequency applications.
Thermal Management: Improve heat dissipation by strategically placing copper to draw heat away from sensitive components.
Signal Integrity: Minimize electromagnetic interference (EMI) and cross-talk by carefully shaping and placing copper planes.
{{polygons-examples}}
Unlike zones—which define areas where copper cannot exist—polygons actively conduct electricity and shape your board's electrical performance, making them fundamental for advanced PCB designs.
Flux's Approach: Polygons Made Easy
At Flux, we prioritize intuitive, user-friendly workflows. Automatic copper fills were the first step. Now with polygons, we've continued this approach:
Easy Start: Begin directly from any pad—Flux automatically associates the polygon with the correct net.
Simple Drawing: Just click to place points and easily adjust your shapes afterward. No complicated setup required.
Automatic Copper Flow: Flux intelligently reflows copper in real-time, automatically handling object avoidance, ensuring clearances, and connectivity.
Polygons in Flux behave intuitively like traces, making them straightforward to learn and use, right from the start.
Powerful Capabilities, Accessible to Everyone
Polygons in Flux pack powerful functionality without complexity:
Multi-layer Polygons: Easily extend your copper shapes across multiple layers with automatic via stitching, simplifying complex designs.
Smart Editing: Quickly edit polygons—drag points to reshape, double-click to add or remove points—keeping your workflow smooth and fast.
Automatic Island Removal: Flux automatically removes disconnected copper "islands," ensuring your polygon remains clean and electrically connected.
Use Cases (With Examples)
Polygons unlock new possibilities in your PCB designs. Here are a few practical ways you'll benefit:
Smart Espresso Brewer: Optimize thermal and power management in consumer electronics with custom polygon shapes, ensuring reliability and consistent performance.
RF Antenna Filter: For RF antenna design, use polygons to minimize impedance mismatches and optimize current flow across transmission lines and radiating structures.
Electronic Speed Controller: For electronic speed controller design, use polygons to create low-impedance power paths that reduce voltage drops and improve current delivery to the motor.
ESP32 4 Ways Power Meter: When switching 220V loads with a 5V control signal using relays, use polygons to create wide, low-resistance traces that safely handle high current loads on the relay’s switched side.
RPi Pico Stepper Motor Driver: For stepper motor driver circuits, use polygons to improve thermal dissipation from the driver ICs and MOSFETs, enhancing reliability and performance under load.
12V to 5V Buck Converter: Use polygons to efficiently handle higher current paths, improving power distribution and thermal management.
Polygons for Designers of All Levels
Whether you're just dipping your toes into PCB design or you’re a veteran engineer tackling complex layouts, polygons in Flux offer the ideal balance of simplicity and capability:
Beginner-Friendly: Instantly intuitive—just click and draw. See immediate results as copper pours automatically.
Professional-Grade Control: Create sophisticated split planes, RF elements, and high-current copper shapes effortlessly, without losing precision or capability.
Try Polygons Today
Polygons are available now in Flux, ready to enhance your PCB design capabilities. Explore this powerful feature today and experience firsthand how advanced design can truly be this easy.
Dive in now and check out our detailed polygon documentation or jump straight into Flux to try it yourself. We can't wait to hear what you think!
Smart Polygons in Flux behave intuitively like traces, making them straightforward to learn and use—start directly from any pad with automatic net association, simply click to place and adjust points, and watch as copper intelligently reflows in real-time. Let’s dive in!
What Are Polygons and Why Do They Matter?
In PCB design, polygons are customizable copper shapes directly tied to a specific net. They’re crucial because they significantly influence the electrical performance and reliability of your PCB. Polygons allow you to optimize your board layout for specific electrical properties, including improved grounding, controlled impedance, and efficient heat distribution.
Specifically, polygons are indispensable for:
Ground and Power Planes: Ensure stable and reliable power distribution, reducing electrical noise and voltage fluctuations.
High Current Management: Create wide copper paths to efficiently carry higher currents, reducing resistance and heat.
RF and Antenna Design:Precisely shape copper areas to meet specific RF performance criteria, critical in high-frequency applications.
Thermal Management: Improve heat dissipation by strategically placing copper to draw heat away from sensitive components.
Signal Integrity: Minimize electromagnetic interference (EMI) and cross-talk by carefully shaping and placing copper planes.
{{polygons-examples}}
Unlike zones—which define areas where copper cannot exist—polygons actively conduct electricity and shape your board's electrical performance, making them fundamental for advanced PCB designs.
Flux's Approach: Polygons Made Easy
At Flux, we prioritize intuitive, user-friendly workflows. Automatic copper fills were the first step. Now with polygons, we've continued this approach:
Easy Start: Begin directly from any pad—Flux automatically associates the polygon with the correct net.
Simple Drawing: Just click to place points and easily adjust your shapes afterward. No complicated setup required.
Automatic Copper Flow: Flux intelligently reflows copper in real-time, automatically handling object avoidance, ensuring clearances, and connectivity.
Polygons in Flux behave intuitively like traces, making them straightforward to learn and use, right from the start.
Powerful Capabilities, Accessible to Everyone
Polygons in Flux pack powerful functionality without complexity:
Multi-layer Polygons: Easily extend your copper shapes across multiple layers with automatic via stitching, simplifying complex designs.
Smart Editing: Quickly edit polygons—drag points to reshape, double-click to add or remove points—keeping your workflow smooth and fast.
Automatic Island Removal: Flux automatically removes disconnected copper "islands," ensuring your polygon remains clean and electrically connected.
Use Cases (With Examples)
Polygons unlock new possibilities in your PCB designs. Here are a few practical ways you'll benefit:
Smart Espresso Brewer: Optimize thermal and power management in consumer electronics with custom polygon shapes, ensuring reliability and consistent performance.
RF Antenna Filter: For RF antenna design, use polygons to minimize impedance mismatches and optimize current flow across transmission lines and radiating structures.
Electronic Speed Controller: For electronic speed controller design, use polygons to create low-impedance power paths that reduce voltage drops and improve current delivery to the motor.
ESP32 4 Ways Power Meter: When switching 220V loads with a 5V control signal using relays, use polygons to create wide, low-resistance traces that safely handle high current loads on the relay’s switched side.
RPi Pico Stepper Motor Driver: For stepper motor driver circuits, use polygons to improve thermal dissipation from the driver ICs and MOSFETs, enhancing reliability and performance under load.
12V to 5V Buck Converter: Use polygons to efficiently handle higher current paths, improving power distribution and thermal management.
Polygons for Designers of All Levels
Whether you're just dipping your toes into PCB design or you’re a veteran engineer tackling complex layouts, polygons in Flux offer the ideal balance of simplicity and capability:
Beginner-Friendly: Instantly intuitive—just click and draw. See immediate results as copper pours automatically.
Professional-Grade Control: Create sophisticated split planes, RF elements, and high-current copper shapes effortlessly, without losing precision or capability.
Try Polygons Today
Polygons are available now in Flux, ready to enhance your PCB design capabilities. Explore this powerful feature today and experience firsthand how advanced design can truly be this easy.
Dive in now and check out our detailed polygon documentation or jump straight into Flux to try it yourself. We can't wait to hear what you think!
Share
Nico Tzovanis
Nico is a professional electronics and PCB design engineer at Flux. Find him on Flux @nico
Go 10x faster from idea to PCB
Work with Flux like an engineering intern—automating the grunt work, learning your standards, explaining its decisions, and checking in for feedback at key moments.
We’re excited to announce our partnership with Ultra Librarian to bring millions of high quality and trustworthy components directly to the Flux ecosystem. This partnership marks a big step towards bringing together all semiconductor manufacturers, distributors, engineers, and the whole hardware industry.
This article highlights 10 of the most popular microcontrollers, based on their usage in embedded systems, memory architecture, and the community support they enjoy.
Imagine an AI teammate that doesn’t just chat about your PCB ideas, but actively transforms them into schematics—placing parts, connecting circuits, and optimizing your design at your command, all through natural language. That’s exactly what the newly overhauled Flux Copilot does.
We’re not just offering a tool; we're building a home where the open-source hardware community can truly flourish. Join us in this exciting journey toward a more collaborative and innovative future.
In this article, we will explore Arduino Uno's fundamental concepts, specifications, and its comprehensive pinout details including programming with the Arduino IDE.
Think you're familiar with the push button and its symbol? Prepare to be surprised! Join us in our latest blog post where we unravel the intricate science behind every press, click, and circuit, revealing the complexities hidden in the simplicity of a push button switch.
Effortlessly calculate parallel and series resistor values with our accurate, user-friendly tool designed to optimize circuit performance and streamline electrical design processes.
Arduino and Raspberry Pi are two of the most popular single-board computers used by electrical engineers for various projects. Both have their own strengths and weaknesses, and choosing between the two depends on the specific requirements of a project.
This blog highlights CES 2025 showcased projects, offering insights on how to recreate them using Flux. With Flux AI-driven design tools, component library, and customizable templates, engineers and hobbyists can build inspired hardware like wearables, drones, EV components, portable chargers, and solar devices.
This comprehensive guide explores the roles and types of electrical connectors in any wiring project. From crimping tools to wire strippers, it outlines the tools and techniques needed for efficient electrical wiring. The post also provides safety tips and insights into specialized connectors.
Explore the mechanics of converting AC to DC in this comprehensive blog post. The article covers everything from the role of transformers in adjusting voltage levels to the function of bridge rectifiers and capacitors in shaping the waveform.